


## MICHIGAN-INDIANA IRRIGATION NEWSLETTER

Greetings,

52540 LAWRENCE RD LEONIDAS, MI 49066

APRIL 2019



**MIA Board Members** 

Jeremy Walker, President Tom Frank, Vice-President

> Ben Russell. Secretary/Treasurer

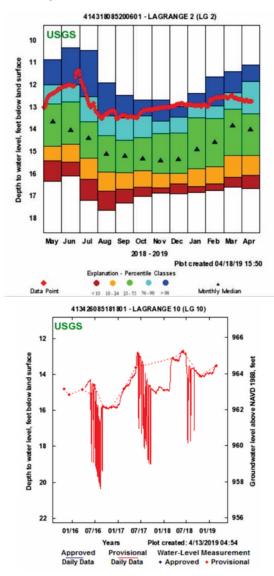
Trustees: Joel Annable **Todd Feenstra** Justin Gentz Brian McKenzie Mike Morehouse Doug Pedler

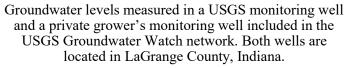
It is hard to believe that planting has begun which leads to a summer of irrigation. There are several articles in this newsletter that I think you will find very helpful this growing season.

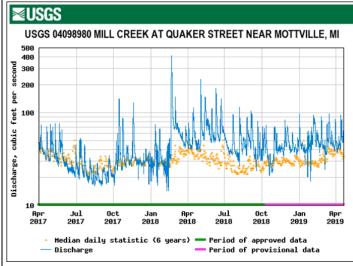
If you have questions about what Michigan Irrigation Association don't hesitate to reach out to one of the current members. Following is the contact information for the current board members:

- Joel Annable
- Todd Feenstra
- Tom Frank
- Justin Gentz
  - Brian McKenzie
- - Doug Pedler
- Ben Russell
- Jeremy Walker

- joel.annable@peerlessmidwest.com
- todd@tritiuminc.net
- tfrank70@comcast.net
- gbfarms@live.com
  - mckenziehighlander@msu.com
- Mike Morehouse mmore@maplenet.net
  - dpedler@maisco.net
    - brussell@mwconnections.com
  - walkerprecisionag@gmail.com


Sincerely,


Jeremy Walker **MIA President** 


JW:tb

## Irrigation Impact on Late Summer Stream Flow, or Lack There of Todd Feenstra - Tritium, Inc.

The groundwater levels and stream discharges across southern Michigan, northern Indiana, and northwestern Ohio are currently well above the long-term median levels. In February of 2018 we observed a rapid rise in groundwater levels of nearly 2 feet across virtually the entire region. The USGS stream gages in southwest Michigan indicate significant increases in stream discharge during that same time period. Given normal precipitation patterns in 2019, both the groundwater levels and the stream discharges are expected to remain well above the long-term median levels.







Surface water discharge at Mill Creek in St. Joseph County, Michigan.

Streamflow depletion due to crop irrigation has still not been identified in our region. Identifying depletion induced specifically by pumping irrigation wells is very difficult due to the limited number of stream gages, the limited accuracy of streamflow measurements, extremely complex geology, and challenges in separating irrigation effects from the other stresses that affect streamflow.

Growers continue to invest in monitoring both the groundwater and surface water resources across the region. The private monitoring well network now exceeds 150 monitoring wells across 9 counties. Significant work is also being accomplished in the modeling/evaluating of streamflow depletion using local scale 2-dimensional analytical models as well as regional scale 3-dimensional numerical models. The Fawn River watershed model has been completed, peer-reviewed, and submitted to the State of Michigan. The LENK Group in Indiana has two peerreviewed, numerical models that cover LaGrange/Noble and Elkhart/Kosciusko counties. And, the Cass County Pilot Project will conclude in the Fall of 2019 with another county-wide numerical model coupled with a wideranging evaluation of field methodologies for both groundwater and surface water measurements.

Groundwater continues to be the focus of increasing legislation and regulation in the Midwest. The State of Michigan enacted new law in 2018 implementing an alternative Site Specific Review process. The law specifies two additional analytical models for predicting streamflow depletion, clearly defines the required data to be collected, and allows for the use of approved regional studies such as the Fawn River model. The State of Indiana has begun to delineate regions of the State for regional water planning. Funding has been provided to form regional water committees and studies, beginning with the Central Indiana Region. In Ohio, several suburbs of Toledo are considering development of groundwater

#### MICHIANA IRRIGATION ASSOCIATION NEWSLETTER

#### PAGE 3

resources in northwestern Ohio to meet their public water supply demands. The plan has drawn sharp criticism from local activist groups who are aggressively pushing for increased regulations and changes to the water laws in Indiana, Michigan, and Ohio.

The increased concerns about the viability of our shared water resources, our own lack of knowledge regarding those resources, and imported fears of aquifer and surface water depletions from other areas of our country have highlighted the need for long-term groundwater and surface water data to build representative and reasonable models. The data and the models are needed to answer difficult questions regarding the source and protection of our shared water resources. One of the greatest assets contained in our region of the Midwest is the tremendous abundance of resilient groundwater and surface water resources that sustains one of the most substantial agricultural industries in the world. We need to define those resources more reliably in order to manage them and protect our future.

## Tar Spot and Irrigated Corn: What we saw in 2018 and will it happen again? Bruce MacKellar, Martin Chilvers & Eric Anderson -MSU Extension

Tar spot, a new fungal pathogen first seen in Michigan in Allegan County in 2016, spread like a wildfire across west Michigan in 2018. The disease, which is prevalent in production areas in Mexico, comes from higher altitude fields in that country. The fungal pathogen apparently is well adapted to our environment here, and likely overwinters on infected corn residue. Based on the rapid spread last season, we anticipate that there will be plenty of spores to go around in southwest Michigan in 2019. I am not sure about northern Indiana.

One of the more troubling aspects of the disease is that it really caused yield reductions during 2018 in the irrigated areas of fields, with much less affect on the dry corners. In some cases, dry corners out yielded irrigated areas with the same hybrid by 30-40 bushels per acre. That is not to say that there was no tar spot in the corners, but to say that the pathogen showed more severity in those areas. In thinking back on 2018, we did not tend to irrigate fields a whole lot in areas where thundershowers were more prevalent. This has us worried that just a couple of irrigation events at the wrong time may have set the stage for rapid disease development. Unfortunately, we were not able to conduct a lot of research and field observations on the situation because we had no idea that the disease would have this level of impact. We have been looking at a few fields that showed this level of reduction, tracing back irrigation events, cloudiness, rainfall, temperature, wind, relative humidity, leaf wetness values from the

closest MSU enviro-weather Station and planting dates for the hybrids planted. This hopefully will give us a place to start in understanding what conditions in the field triggered severe infection last season.

In visiting with Marty Chilvers, MSU Field Crops Pathologist, he thinks that trying to manage irrigation to reduce tar is going to be a tough challenge, and success will likely depend on several weather factors, especially dew point. He believes limiting leaf wetness is going to be critical. Considering this, irrigating late in the day would most likely extend the time leaves remain wet and enhance tar spot development. If we have conditions where the leaves are already going to be wet, say 1:00 am, maybe this is an ideal time to run the pivot until the sun's up. Then shut the system off and let the canopy dry out. How quickly leaf drying would occur depends on cloud cover, relative humidity and wind speed. We are going to be working on gathering leaf wetness data on both irrigated and dry corner corn plants this summer to help provide Dr. Chilvers crew with a better insight on how center pivot irrigation changes the duration of leaf wetness under field conditions.

Managing irrigation to minimize the duration of leaf wetness is not how we have thought about running center pivots in the past. And depending upon water demand and the capacity of a system to cover acres, you may not be able to do it in the future and maintain yield potential. But some aspects of irrigation triggered disease response in 2018.

Managing for Tar Spot: Unfortunately, the disease is so new to the US that there has not been a lot of research compiled to determine the best ways of controlling the disease. Screening evaluation of university hybrid performance trials has shown us there are pretty substantial differences between hybrids in commercial corn. Initial recommendations would be to obtain as much information as possible from the companies about hybrid performance in areas with tar spot issues in 2018. Fungicide applications will likely increase on commercial corn grown in areas where the disease is prevalent. The thought is that products that provide both a protectant and curative function will likely be the most widely used in 2018. The timing and duration of tar spot sporulation makes the best timing of fungicide application a bit harder to know. Marty suggests that if you were planning on making a single application of a fungicide, applying around Tasseling would probably provide the best window for application. If two applications are being considered, the first application most likely would be applied during the later vegetative growth stages, with the second applied closer to R2. As the seed industry completes more screening for hybrid resistance to Tar Spot and incorporates these genes is into their breeding lines, we hopefully will be able to reduce our reliance on fungicides to control this disease.

### Reducing Irrigation Cost Lyndon Kelley - MSU Extension & Purdue Extension

Almost all crop producers are experiencing tight margins. The added expense of irrigation investment increases the need to keep expenses in check. Here are a few areas that have the potential to reduce irrigation costs while keeping yields and returns up.

#### Only apply water that will increase yield or profits

Suppling the water necessary to prevent water stress yield reduction is the goal of checkbook irrigation scheduling. Tracking the daily water removal, termed Evapotranspiration (ET) and rainfall allow irrigators to apply the water necessary to replace the deficit. Irrigation scheduling will provide for the highest yield with the least irrigation needed.

Indiana producers may use data from their own ET gauge station or rET (reference evapotranspiration) data from Purdue's PAC center weather stations. Simply multiply the reference ET by the crop coefficient (Kc) which stands for the ratio of you crops water use at its stage of development to the reference crop (6" grass). If you multiply that result by 7 (days), you obtain the estimated corn water use per week. Support for irrigation scheduling in Indiana can be found at:

https://www.purdue.edu/agsoftware/irrigation/

Michigan and Indiana producers in the counties adjacent to Michigan, can have daily rET data sent to them by Email or text by signing up for the service at MSU Enviro-Weather website.

(<u>https://enviroweather.msu.edu/rpetalert.php</u>). Messages are sent at 5:30 AM each day providing rET data for the previous five days and estimates of projected rET for the following 7 days from any of the networks 87 stations. Estimates of rET can also be found by going to the Enviroweather web site at <u>https://enviroweather.msu.edu/</u> and following the link to "More weather" and then navigate to the "Water-use tools" heading.

#### Use big irrigation applications

To make the best use of irrigation water, producers will want to try to provide 4 or 5 days' worth of crop water use per application, typically 1 to 1.25 inches at peak water use periods. These larger irrigation applications increase the amount of effective water available to the crop by reducing the water lost by evaporation in the crop canopy and on the residue and soil surface, about 0.1" per application regardless of the amount of irrigation water applied. A producer making two 0.5" applications provides 0.8" of effective water, compared to a producer making a single 1.0" application that provides 0.9" of effective water. Irrigators with center pivots that apply water faster than can infiltrate into the soil are forced to use smaller applications (less than 0.5") to avoid irrigation runoff.

#### Irrigate to the end

Irrigate until the crop reaches maturity but no longer to increase and ensure yield and test weight. The goal of the soybean irrigator should be to maintain at least 50% of his available soil water holding capacity for soybeans till most pods yellow. Corn producers trying to maintain test weight in a dry late summer should maintain at least 50% of the available soil water holding capacity until the crop reaches black layer.

# Use fertigation or spit N application to maximize return on your Nitrogen

Irrigated production has the advantage of fertigation as an option in nitrogen management. Fertigation is the process of applying fertilizer through irrigation water. Liquid 28% nitrogen is the most common product for fertigation with proper equipment.

From a management standpoint, fertigation allows producers the opportunity to evaluate crop stands, N losses due to wet conditions or heavy rains and the current market situation to adjust the nitrogen plan to meet the crops needs and maximize profitability. The closer the N fertilizer is applied to the time of peak crop needs, results in the least potential for N loss and the greatest return for your N investment.

Even if you never fertigate, irrigation still provides the opportunity to water in surface applied or knife in N applications. Incorporation by irrigation reduce N loss to valorization, increasing the amount of N the crop can benefit from.

#### Use the least expensive energy source available

Choosing the most cost effective energy source available has the potential to have immediate and long term cost saving. If available at reasonable installation cost, threephase electric is the low cost source when you consider the cost of energy, equipment and maintenance. If installation cost of electricity is prohibitive, consider propane/natural gas compared to diesel fuel powered systems.

If you are lucky enough to have electric power, contact your supplier to explore potential saving from "off peak use" pricing opportunities and winter disconnect option to further lower costs.

#### Control system that prevent overwatering

Automation of irrigation system can be an extra expense at a time that budgets are tight, but interlocking pumps and center pivots or other distribution systems can be done for under \$500 and can avoid overwatering when the pivot stops or application cycle ends.

#### MICHIANA IRRIGATION ASSOCIATION NEWSLETTER

#### PAGE 5

# Maintain irrigation equipment to minimize expensive repairs

Irrigation repair people seem to agree, most of the costly irrigation repairs could be avoided with preventive maintenance and precautionary start-up procedures. Here are a few of their words of wisdom:

- Remove mice, insects, vermin and their nests and waste. Close access to electrical control boxes before spring start-up.
- Clean and inspect the function of electric disconnect boxes, and well starter systems.
- Test center pivot end stop controls and stop structures before the first run.
- Test traveler end run stop control system before the first run.
- Trim or remove trees and brush that are anywhere near the pivot end boom's travel path.
- Inspect tires early in spring, add air to specification, recheck a couple weeks later, repairing any tire that lost pressure.
- Observe each center pivot drive motor and drive gearbox while running, drain accumulate water, check oil levels and refill. Growling and grinding sounds indicate the need for replacement or repair.

Dealing with these issues before planting reduces the need for expensive repairs and minimizes the start-up time needed the first time the irrigation system is used. The added benefit of being ready to irrigate to aid in germination, emergence, incorporate fertilizer or activate herbicide often leads to a better start to a profitable year.

## Using Soil Moisture Meters to Compliment Irrigation Scheduling

Steve Miller & Younsuk Dong - MSU BAE

There are several tools available for assisting irrigators in making irrigation scheduling decisions. These include paper copies on a clip board that can stay in the truck, and excel spreadsheets that assist in calculating water demand to prove graphical outputs.

All scheduling methods rely on estimated crop water usage that uses a reference value of Evapotranspiration (ET) (a well-watered grass) derived from weather station data that is then modified to reflect the crop being irrigated. We are developing methods to use satellite data to estimate ET and crop water stress then making that data available to irrigators.

These tools are helpful but cannot replace field observation of soil moisture at multiple depths and crop conditions. Soil moisture sensors can be a valuable tool to complement irrigation scheduling. All sensors use the fact that water transmits an electrical charge or electrometric pulse better than soil. To provide useful information, the sensors must be installed in representative locations in the field, be properly installed with good contact between the sensors and the soil and the results interrupted knowing soil texture.

The cost of sensor systems range in price from \$440 for a Irrometer handheld meter with 5 sensors to \$3,800 for a Campbell Scientific with continuous data collection, 5 sensors and remote access to the data. For a detailed breakdown of examples of cost and a description of various sensors see the PowerPoint at: <u>https://www.egr.msu.edu/bae/water/sites/default/files/content/Sensor%20Comparison%202018.pdf</u>

An affordable sensor system is being developed that includes 5 sensors, a data logger and remote access the continuous data that can be viewed on a smart phone, tablet or computer. We expect the components for the system to cost about \$200 and less than \$30 a year for the remote access.

#### PAGE 6

## **Calendar of Upcoming Meetings**

Anaerobic Digester Operator Training

MAY 7, 2019 - MAY 9, 2019 10 A.M. - 3 P.M. 4090 COLLEGE RD LANSING, MI 48910 - This training is designed for operators of anaerobic digesters.

Mid-Michigan Livestock Network - Drones in Action!!!

MAY 16, 2019 6:00PM - 8:00PM KITTY CURTIS FARM, DIRECTLY ACROSS FROM GREENWOOD TWP. HALL, 3447 TEMPLE DR., HARRISON, MI 48625 - Join the Mid-Michigan Livestock Network at our May program in the field, where guest speaker Charles Rhines from Aero Bay Shores demonstrates what his company can do with the use of aerial vehicles (drones).

#### **Right-of-Way Review Class**

JUNE 5, 2019 8:00AM - 5:00PM 8 A.M. - 5 P.M. MSU EXTENSION WASHTENAW 705 N. ZEEB RD. ANN ARBOR, MI 48107 - Right-of-Way review class for Commercial Pesticide Applicators.

Mid Michigan Livestock Network - McKimmy Ag Services

JUNE 20, 2019 6:00PM - 8:00PM MCKIMMY AG SERVICES, 1925 NICKLESS RD., GLADWIN, MI 48624 - Join Matt and Kristen McKimmy as they give us a tour of McKimmy Ag Services and cover their vision for the future of the Elevator in Gladwin.

#### MSU Agriculture Innovation Day

The 2019 MSU Agriculture Innovation Day will take place on July 26, 2019 at Michigan State University Farms in Lansing, Michigan. With a theme of "Focus on Precision Technology That Pays," experts will detail how implementing technology that aids in decision-making can improve yields, increase profit margins and reduce environmental impacts.

The free event, which runs from 8:30 a.m. to 5 p.m., features nine field-based sessions focused on specific issues and includes lunch.

Daily updates for ag producers from MSU Extension: If you haven't added <u>https://www.canr.msu.edu/agriculture/news</u> to your favorites, you should. We have taken our seasonal pest update system and expanded it from crops, vegetables and fruit to livestock, poultry, dairy, bioenergy, farm management and home horticulture, year round. This web site is updated DAILY by MSU Extension field staff and campus faculty, with current and relevant items that can impact all areas of your ag business.